
A Software-defined Tensor Streaming Multiprocessor for
Large-scale Machine Learning

Dennis Abts
Groq Inc.

Garrin Kimmell
Groq Inc.

Andrew Ling
Groq Inc.

John Kim
KAIST/Groq Inc.

Matt Boyd
Groq Inc.

Andrew Bitar
Groq Inc.

Sahil Parmar
Groq Inc.

Ibrahim Ahmed
Groq Inc.

Roberto DiCecco
Groq Inc.

David Han
Groq Inc.

John Thompson
Groq Inc.

Michael Bye
Groq Inc.

Jennifer Hwang
Groq Inc.

Jeremy Fowers
Groq Inc.

Peter Lillian
Groq Inc.

Ashwin Murthy
Groq Inc.

Elyas Mehtabuddin
Groq Inc.

Chetan Tekur
Groq Inc.

Thomas Sohmers
Groq Inc.

Kris Kang
Groq Inc.

Stephen Maresh
Groq Inc.

Jonathan Ross
Groq Inc.

ABSTRACT

We describe our novel commercial software-defined approach for

large-scale interconnection networks of tensor streaming process-

ing (TSP) elements. The system architecture includes packaging,

routing, and flow control of the interconnection network of TSPs.

We describe the communication and synchronization primitives of

a bandwidth-rich substrate for global communication. This scalable

communication fabric provides the backbone for large-scale sys-

tems based on a software-defined Dragonfly topology, ultimately

yielding a parallel machine learning system with elasticity to sup-

port a variety of workloads, both training and inference. We extend

the TSP’s producer-consumer stream programming model to in-

clude global memory which is implemented as logically shared, but

physically distributed SRAMon-chipmemory. Each TSP contributes

220 MiBytes to the global memory capacity, with the maximum

capacity limited only by the network’s scale Ð the maximum num-

ber of endpoints in the system. The TSP acts as both a processing

element (endpoint) and network switch for moving tensors across

the communication links. We describe a novel software-controlled

networking approach that avoids the latency variation introduced

by dynamic contention for network links. We describe the topol-

ogy, routing and flow control to characterize the performance of

the network that serves as the fabric for a large-scale parallel ma-

chine learning system with up to 10,440 TSPs and more than 2

TeraBytes of global memory accessible in less than 3 microseconds

of end-to-end system latency.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISCA ’22, June 18ś22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527405

CCS CONCEPTS

· Computer systems organization → Interconnection archi-

tectures.

KEYWORDS

Machine Learning, Tensor Streaming Processor, Dragonfly, Soft-

ware Scheduling

1 INTRODUCTION

Historically, high-performance computing (HPC) systems were

broadly categorized as capability or capacity systems. This di-

chotomy arises because of communication latency and bandwidth

trade-offs when we apply more processing elements (PEs) to a

fixed-size problem (strong scaling) with the goal of minimizing the

program’s execution time. Alternatively, we can deploy more PEs

to increase throughput (i.e. weak scaling). This duality requires

both novel chip architectures [7][1][36] in the underlying PEs and

a scalable system architecture with high throughput (bisection

bandwidth) and low end-to-end latency (low network diameter) for

fine-grained communication necessary to efficiently handle both

strong and weak scaling. For example, the network demand for

training an ML model, often requiring data parallelism (weak scal-

ing), differs from inference on that same model using (pipelined)

model parallelism (ie. strong scaling). The multiprocessor system,

interconnection network, and the programming model of the indi-

vidual processing elements work in unison to collectively execute

the different łlayersž of a deep learning network. It is this set of

sub-tasks, expressed as individual PE programs, that are distributed

among the computing elements and responsible for carrying out,

or executing, the specifics of the machine learning model.

The burgeoning parameter space of natural language processing

(NLP) models like GPT-3 [6] use 100s-of-billions of parameters to

https://doi.org/10.1145/3470496.3527405

ISCA ’22, June 18ś22, 2022, New York, NY, USA Abts and Kimmell, et al.

Figure 1: A conventional manycore chip multiprocessor

with sources of non-determinism (highlighted in red) which

can reorder memory and network references.

achieve state-of-the-art accuracy for a variety of inference applica-

tions. These models require significant compute resources for both

training [31] [39] and inference to spread the model across multiple

processing elements. The computational demands of large models

are twofold: requiring memory resources to store model parame-

ters, constants, and gradients to fit into the available memory of

each processing element; and load balance the computation (flops)

across the processing elements. To efficiently train these models,

a variety of techniques have been used to exploit both pipelined

(model) parallelism [30][19] and data (mini-batch) parallelism.

In a conventional CPU or GPU multiprocessor, the memory and

network resources are dynamically shared among the processing

elements (Fig 1) and are a source of non-determinism. To make

an ML model amenable to execution on a parallel computer, we

must first decompose the model into sub-tasks that can be mapped

to the underlying processing elements of the system. The com-

munication cost among the PEs is tightly coupled to the system’s

packaging hierarchy which seeks to exploit łpackaging localityž

wherein proximal compute resources are densely connected provid-

ing more bandwidth among these highly-connected components.

As a result, the parallel decomposition strategy is aligned with the

system packaging hierarchy in terms of racks, nodes, and eventually

the PEs carrying out the execution of each sub-task.

This paper describes the novel software-defined system architec-

ture of a commercial, scale-out tensor streaming processing (TSP)

multiprocessor. The software-defined multi-TSP system extends the

determinism of a single TSP using software-scheduled high-radix

Dragonfly network and ISA łruntime deskewž instruction support

to maintain the illusion of a synchronous, lock-step system. We

describe the system architecture in terms of TSP endpoints [1],

network topology, routing, flow control, and fault tolerance. The

scalability or scale-out bandwidth is determined from the system

packaging constraints which in turn drive the system’s łbandwidth

profilež (Fig 2). The bandwidth profile expresses the relationship

between system scale (number of endpoints) and global bandwidth

and illustrates the bandwidth cliffs at each system packaging bound-

ary. As Fig 2 shows, small systems with fewer than 16 TSPs can take

advantage of abundant wire density within the node, and larger

systems up to several hundred TSPs can take advantage of about

50 GB/sec of global (bisection) bandwidth per TSP. As system size

grows beyond 264 TSPs, the available global bandwidth flattens to

Figure 2: The global bandwidth profile per TSP.

about 14 GB/sec of global bandwidth per TSP endpoint. The Drag-

onfly network delivers flat global bandwidth up to the maximum

system configuration of 145 cabinets for a total of 10,440 TSPs.

In the remainder of this paper, we describe the system architec-

ture that enables a synchronous communication model across the

network fabric of TSP elements, in particular:

• We propose a software-scheduled high-radix interconnection

network that enables deterministic communication among

TSPs and eliminates latency variance. We also describe the

design and implementation of a software-scheduled Dragon-

fly topology for scale-out TSP system.

• We describe the hardware-software interface implementa-

tion including instruction level support to łdeskewž and

align a set of plesiochronous links to enable a synchronous

distributed programming model and a tensor-based commu-

nication protocol that eliminates packet headers/footers.

• We propose and describe a novel source-based routing and

flow control that enables a software-scheduled network with

explicit software control of the traffic pattern and its total

ordering of packets across the network.

• We evaluate system performance on representative work-

loads: 1) distributed matrix multiplication, 2) Cholesky fac-

torization, and 3) latency-sensitive collectives such as All-

Reduce that are essential for scaled ML or converged HPC

applications.

2 SCALE-OUT SYSTEM ORGANIZATION

The programming model of the TSP is based upon a statically sched-

uled, deterministic execution with 220 MiBytes of local storage for

parameters and instruction text [1]. Each TSP is programmed using

a producer-consumer stream programming model that allows func-

tional units to be chained together. The TSP’s functional units are

organized as 320-element SIMD (single instruction multiple data)

instruction execution into functional slices consisting of a group of

20 tiles, each of which perform a 16-way SIMD computation on the

data. To enable seamless scalability and preserve that programming

model across multiple TSP processing elements, the network also

needs to be deterministic. In this section, we describe the Dragonfly

topology that is exploited for the software-defined system archi-

tecture to provide scalability. We detail the core topology design

objectives to achieve the desired scale-out application demands,

the hierarchical organization of the system based on the Dragonfly

topology, and the fundamental properties of the chip-to-chip (C2C)

links between processing elements.

A Software-defined Tensor Streaming Multiprocessor for Large-scale Machine Learning ISCA ’22, June 18ś22, 2022, New York, NY, USA

Figure 3: The global shared address space is physically dis-

tributed among the TSPs in the system.

Figure 4: High-level organization of (a) indirect network, (b)

direct networks, and (c) proposed software-scheduled (łdi-

rectž) scale-out organization (R: router, P: processing end-

point).

2.1 Topology Objectives

The objectives of the scale-out multi-TSP system topology are the

following.

Low network diameter: The total observed communication la-

tency and variance increases with the number of hops in the the

network. Thus, reducing the network diameter is known to reduce

network latency (hop count) as well as lower the network cost [26].

Direct Network: System topologies can be classified as either indi-

rect or direct networks1 (Fig 4). While indirect networks such as fat-

tree have been commonly used for large-scale systems, they require

intermediate switches or routers that introduce non-determinism

from dynamic arbitration and queuing. Instead, a direct network

(Fig 4(b)) removes intermediate routers as all routers have end-

points connected to them. In the scale-out TSP system, the direct

network is extended to create a łgluelessž multiprocessor by com-

bining the processing endpoints and the routers (Fig 4(c)) ś thus,

directly connect TSPs to create their communication fabric. While

1Indirect networks are defined as systems where endpoints and switches are considered
łseparatež while direct networks can be represented as endpoints and switches being a
single łnode.ž [11]

Figure 5: Four levels of packaging hierarchy, where each

chip (a) is fitted with a heat-sink and packaged on a PCIe

card (b) and eight TSP cards are co-located within the a

shared memory node (c) occupying four rack units (4RU) in

the rack (d). An expanded view of node shows the abundant

intra-node, low-profile cables within the chassis to exploit

packaging locality.

eliminating the non-determinism that can be induced by the in-

termediate routers, software-scheduled network organization also

enables high injection bandwidth as the router node bandwidth

effectively becomes processing endpoint injection bandwidth.

Hierarchical Packaging-aware Topology: The topology of the

interconnection network is driven primarily by the packaging con-

straints [11] imposed by system packaging hierarchy. In particular,

while high-radix routers can achieve low network diameter, en-

abling high-radix can be a challenge in the scale-out systems pack-

aging (pin) constraints. The packaging constraints encountered

in designing our system vary across levels of the hierarchy: from

pin-count constraints on the ASIC die level; area and form-factor

constraints at the PCIe card level; general-purpose CPU (non-TSP)

compute, power, cooling, and cabling routing constraints at the

chassis level; to cable length and power at the rack level.

To achieve the objectives described above, the Dragonfly [25]

topology was leveraged in the scale-out system. While high-radix

topologies such as Flattened Butterfly [24] or HyperX [3] can be

leveraged, their scalability is limited when the router or node radix

is small. However, by using a collection of routers as a group, a

virtual high-radix network can be created with the Dragonfly and

enables scalable topology with lower radix node while not requiring

intermediate switches that is required for topologies such as the

fat-tree.

2.2 System packaging hierarchy

The basic building block of the system packaging is a 4U chassis

enclosure which houses eight TSPs as shown in Fig 5 that is referred

to as a łnode.ž The pin-bandwidth from each TSP is partitioned

into 7 łlocalž links and 4 łglobalž links. The 7 local links are used

to provide full connectivity between the group of 8 TSPs that are

within the same SMP coherence domain and can communicate

synchronously with other TSPs in the node (Fig 6). All of the global

links for each TSP within a node can be combined to create a

ISCA ’22, June 18ś22, 2022, New York, NY, USA Abts and Kimmell, et al.

Figure 6: Scale-out topology block diagram.

32 łvirtualž port high-radix router to effectively be a łgroupž that

is used as a building block of the Dragonfly topology. Each C2C

link consist of four (4) lanes and thus in theory, the radix can be

increased to 11 × 4 = 44 ports. However, the packaging constraints

of a PCIe card limits the number of links that can be exposed for

inter-node communication. Instead, we exploit the abundant wire

density within the 4U node chassis level of the packaging hierarchy,

to enable full connectivity between the 8 TSPs while reducing the

amount of bandwidth for global communication.

Using a node as a building block with 32-port virtual router, the

TSP system can scale out up to 33 nodes for total of 33×8 = 264 TSPs

by providing full connectivity between all of the nodes that results

in a three hop topology with minimal routing. Thus, it allows fine-

grained communication across the 264 TSP system and efficient

access to its combined 56 GiBytes of global SRAM (Fig 3). At the

next higher layer of the packaging hierarchy is the rack, consisting

of nine (9) nodes, each with eight (8) TSPs, interconnected via the

four (4) łglobalž links per TSP for a total of 32 × 9 = 288 ports

of global bandwidth. To scale to even larger systems, we can use

the rack as the łlocal groupž and partition half of the 288-ports to

doubly-connect the set of nine (9) nodes within each rack using half

(144) of the ports so that we have the proper 2× łinternal speedupž

within the local group required to route traffic among the global

links. The remaining 144 ports are used to connect to other racks in

the system and delivers up to 145 racks in the maximally configured

system or 145 (racks) ×72 (TSPs per rack) for a total of 10,440 TSPs

in the largest system with at-most 5 hop diameter using minimal

routing (two in the source-rack, one global hop, and two in the

destination-rack).

2.3 Chip-to-chip (C2C) links and flow control

The chip-to-chip (C2C) links connect TSPs both within and be-

tween nodes. The C2C links use low-swing differential signaling

operating up to 30 Gbps2 over 34 AWG cables, with the longest

cable being 0.75 meter within the node. This low-profile cabling is

designed to lay flat underneath the shroud used on the 4U enclosure.

Likewise, we can exploit packaging locality and keep cables within

the rack relatively short (<2m) and use low-cost QSFP (quad-small

form package) electrical cables limiting the more expensive active

optical cables for longer rack-to-rack connections. Each node has

2The C2C links support a variety of operating speeds, however, in general we operate
all the links at the same data rate of 25 Gbps for both electrical cables within racks and
active-optical transceivers between racks, with a combined bandwidth of 100 Gbps
across the four lanes in a link.

28 internal C2C cables to fully-connect the eight (8) TSPs with their

7 peers within the node. This allows us to keep 73% of the cables

(44 of 60 cables used by each node) short and inexpensive using

electrical signaling.

As a consequence of the deterministic network design, the hard-

ware is disallowed from asserting back pressure which would dis-

rupt deterministic operation of the network. Instead, software ex-

plicitly schedules vectors on each physical link in the system taking

into account the channel bandwidth and latency of each channel to

ensure we never overflow the transmitter or underflow the receiver.

Specifically, as a tensor flows hop by hop through the network,

we use the local SRAM storage on each TSP to provide interme-

diate buffering of the tensor’s individual vectors and in this way,

a vector is the flow control unit (flit). Since the network path is

fully deterministic, a tensor consisting of one or more vector flits

can be scheduled using virtual cut through [23] flow control since

the receiving TSP can immediately begin sending vectors to the

next-hop of the tensor’s path.

3 MAINTAINING DETERMINISM IN A
DISTRIBUTED SYSTEM

The collection of functional units on each TSP act as a single logical

core which is scheduled statically (at compile-time). We extend the

single-chip TSP determinism to a multi-chip distributed system so

that we can efficiently share the global SRAM without requiring a

mutex to guarantee atomic access to the global memory Ð instead,

we communicate with explicit send or receive instructions at spe-

cific times so we can reason about program correctness from this

total ordering. In order to achieve this predictable behavior, the

TSP hardware-software interface exposes all architecturally-visible

state (all SRAM, and stream registers) so that the static computation

graph can be expressed as a series of dependencies that impose

temporal deadlines on the operand arrival times of tensors being

communicated. We express these dependencies as a DAG (directed

acyclic graph) to explicitly schedule the communication traffic. Sum-

mary of ISA support to enable determinism across multiple nodes

is shown in Table 1.

A multi-TSP system relies on three mechanisms to establish and

maintain synchrony: i) a per-TSP collection of hardware-aligned

counters that are continuously (every 256 cycles) exchanged to

maintain a global consensus time; ii) a procedure for initial pro-

gram alignment that utilizes the links to ensure every TSP begins

executing its instructions simultaneously; iii) a runtime resyn-

chronization process to account for individual TSP clock drift

during long-running computations.

3.1 Hardware aligned counters (HAC)

Synchronizing a network of TSPs involves a combination of hard-

ware and software mechanisms. Each TSP maintains a free-running

internal hardware aligned counter (HAC) with a low (< 256 cy-

cle) overflow period. 3 When two TSPs are connected via a point-to-

point C2C link, each TSP will transmit its internal HAC value to its

peer. This provides a mechanism for characterizing link latency by

having a TSP transmit its current HAC value, then its peer reflect

that value back. When the reflected HAC value is returned to the

3The HAC period is also referred to as an epoch.

A Software-defined Tensor Streaming Multiprocessor for Large-scale Machine Learning ISCA ’22, June 18ś22, 2022, New York, NY, USA

Table 1: ISA support for a deterministic scale-out system.

Name Description

HAC hardware aligned counter

SAC software aligned couner

SYNC intra-chip pause instruction

NOTIFY intra-chip global signal to functional

units to restart execution

DESKEW pause instruction until HAC over-

flows

TRANSMIT instruction to send notification to

child through C2C link

RUNTIME_DESKEW 𝑡 delay TSP for 𝑡 ± 𝛿𝑡

originating TSP, it is compared with the internal free-running HAC,

with the difference being the link latency (modulo a multiple of the

HAC period) (Fig 7(a)). This procedure is repeated until we have

an acceptable confidence in the estimate of mean latency and vari-

ance within the system tolerance. Table 2 summarizes the results

of performing this operation 100K times within a 8-TSP node and

latency for 7 of the intra-node C2C links are shown.

After a link latency is characterized, two peer TSPs 𝑇0 and 𝑇1,

with an observed latency with mean 𝐿, are configured in a paren-

t/child relationship such that the HAC maintained within 𝑇0 (i.e.,

HAC0) serves as the reference and is periodically transmitted to

𝑇1. When the instantaneous value of HAC0 is received by 𝑇1, its

value plus the latency 𝐿 is compared to HAC1. The difference rep-

resents initial misalignment from continual clock drift. The value

of HAC1 is adjusted to reduce the difference (the maximum adjust-

ment rate is configurable). After a sufficient number of iterations

of this process (approximately bounded by the period of the HAC

counters), the two counters HAC0 and HAC1 will converge within

a neighborhood determined by the jitter of the link latency. Thus,

this protocol determines a common periodic reference for two TSPs.

To expand this protocol to a multi-hop network of TSPs, a spanning

tree of parent/child HAC relationships is established to maintain a

common HAC reference time distributed across the network.

The HAC alignment procedure serves as the foundation upon

which the synchronous distributed system is programmed. We

build upon this foundation with software-controlled ISA support

for a common software clock reference. We recall the foundations

for deterministic scheduling [1] of multiple functional units on a

single TSP depends on a SYNC instruction to łpausež issue from the

independent instruction streams for the various units, followed by

a single functional unit issuing a NOTIFY instruction. This NOTIFY

instruction in turn results in a global control signal (with known

latency) to be delivered to the paused functional units, causing

them to restart execution on the same clock cycle. This NOTIFY

thus serves as the software-controlled time reference upon which

all other static scheduling is derived.

3.2 Initial program alignment

The SYNC and NOTIFY instructions provide a chip-wide synchroniza-

tion mechanism that relies on a shared clock and fully-deterministic

control propagation path which does not exist in a multi-TSP sys-

tem since each TSP has an independent clock source. However, the

Table 2: HAC latency characterization of seven (7) intra-node C2C

links based on 100K iterations.

link min mean max std

A 209 216.87 228 2.93

B 210 216.87 227 2.88

C 209 216.41 226 2.66

D 210 216.47 226 2.71

E 209 216.27 226 2.78

F 209 216.48 225 2.63

G 211 217.35 228 2.84

common (periodic) HAC reference can be combined to provide the

illusion of a shared clock across the entire system in the following

manner. First, we introduce a DESKEW instruction that allows us to

align program execution with the (local) HAC. When a functional

unit executes a DESKEW, it will pause issuing subsequent instruc-

tions on that functional unit until the next time the HAC overflows

or the epoch boundary. This allows us to ensure that distributed

computation can begin relative to a HAC epoch boundary that is a

shared reference time among TSPs in the network.

Fig 7(b) shows the HAC-based synchronization procedure using

DESKEW instructions in preparation for invoking a multi-TSP pro-

gram. At time 𝑡1, the child device is locally placed into a polling

synchronization loop. In the polling loop, at each epoch boundary

(shown as HAC=0), the child device will wait to receive a vector from

the parent device. If that vector has not been transmitted yet, the

loop will continue. At time 𝑡2 a parent program is invoked that per-

forms a DESKEW followed by a TRANSMIT. Though the events 𝑡1 and

𝑡2 are unsynchronized, the use of DESKEW forces alignment of the

subsequent instruction with the shared HAC value. The TRANSMIT

from the parent happens at an epoch boundary and the vector ar-

rives at the child at some time 𝑡3. This vector will be consumed

by the RECV instruction that will issue following the next epoch

boundary following 𝑡3. This will cause the child device to exit the

synchronization loop at ⌊𝐿/𝑝𝑒𝑟𝑖𝑜𝑑⌋ +1 clock epochs 4 following the

transmit from the parent to child device, at time 𝑡4. Finally, both the

parent and child device will issue a (chip-local) NOTIFY instruction

at time 𝑡4 to begin synchronized computation.

To support scaling to multi-hop networks, the system incorpo-

rates the DESKEW-based synchronization process repeatedly along

each hop of the HAC spanning tree, with an overall synchronization

overhead of (⌊𝐿/𝑝𝑒𝑟𝑖𝑜𝑑⌋ +1) ∗ℎ total cycles, where 𝐿 the maximum

single-link latency and ℎ the height of the spanning tree. Note that

this overhead occurs only at the start of a distributed inference. A

lighter-weight (approximately 1 epoch) runtime resynchronization

process described in the following section is used to adjust for clock

skew during program execution.

3.3 Runtime deskew for resynchronization

The HAC-based scheme described in the previous section estab-

lishes a common starting time reference for a multi-TSP system, but

the inter-TSP drift due to frequency uncertainty of the independent

4𝐿 is the latency of the parent to child link and the period is the epoch length or 252
clock cycles. The HAC is an 8-bit counter, but 4 values are reserved for special control
codes.

ISCA ’22, June 18ś22, 2022, New York, NY, USA Abts and Kimmell, et al.

Figure 7: Sequence diagram overview of synchronization for (a)

HAC exchange and adjustment and (b) initial synchronization.

clocks across multiple TSPs must also be tolerated. The TSP pro-

vides an additional software aligned counter (SAC) to allow the

TSPs to re-synchronize during computation to keep accumulated

drift within allowable tolerances. The SAC is a free-running counter

with the same period as the HAC. However, unlike the HAC, it is

not updated to correspond with upstream HAC peers, but rather

continues to freely count local clock cycles. The delta between a

TSP’s SAC and HAC, thus represents the accumulated drift of the

łlocalž view of time (i.e. SAC) since the last synchronization and the

łglobalž view of time (i.e., HAC).

To reconcile the local vs global time, a RUNTIME_DESKEW instruc-

tion is provided in the ISA. The instruction takes a single parameter:

a target number of clock cycles to stall. When executed, the TSP will

delay for the target number of cycles plus or minus 𝛿𝑡 , the signed

difference of the HAC and SAC. In the event that 𝛿𝑡 is positive, the

łlocalž time is faster than the łglobalž time represented by the HAC,

and the TSP will stall for the target number of cycles plus 𝛿𝑡 , and

vice-versa if the difference is negative. In this manner the łlocalž

time is re-aligned with the łglobalž time, the multi-TSP system

is re-synchronized, and the accumulated global error is reduced

to the link jitter. This RUNTIME_DESKEW instruction is scheduled

to be executed on each TSP within the network at the same time.

While it is executing, the other functional units on each TSP are

quiesced by performing a SYNC instruction to park each ICUs, until

it is subsequently awakened via a NOTIFY instruction.

4 SOFTWARE-SCHEDULED NETWORKING
(SSN)

A foundational characteristic of the TSP architecture is its deter-

ministic data paths. Execution latency of all instructions is known

statically (at compile time) and therefore exposed to the compiler

via the ISA (instruction set architecture). As described earlier in the

previous section, the hardware extends the guarantee of determin-

istic execution from a single TSP to a multi-TSP system. Achieving

this determinism across the full network allows the compiler to not

only have cycle-accurate knowledge of all data movement within a

single TSP, but also across the links connecting the network of TSP

processing elements. The exact timing (in cycles) to inject a vector

at the source TSP, as well as the exact cycles data will arrive at a

destination TSP, can all be resolved at compile time. We refer to this

networking paradigm as software-scheduled networking (SSN) since

it replaces the notion of dynamically routing packets as they flow

A B

C D

backpressure

1

2

3

A B

C D

Conventional
(Non-Deterministic)

Network

Software-Scheduled
Network

re-route

(a) (b)

Figure 8: Comparison of (a) conventional network and

(b) software-scheduled network (SSN) when routing con-

tention can occur. SSN resolves all contention via software

at compile-time and does not require adaptive hardware or

congestion sensing to assert back-pressure.

in the network, with scheduling tensors at compile time. With our

SSN approach, all contention for both functional units and network

links are resolved at compile-time. In the remainder of this section,

we discuss the design of the interconnection network of the TSP

multiprocessor system that enables software-scheduled network,

including:

(A) Deterministic traffic pattern from static graph analysis

(B) Scheduling of communication, not routing

(C) Deterministic routing, including non-minimal routes

(D) No hardware arbitration and explicit (software) flow control

(E) Forward-error-correction (FEC) to avoid reactive link-layer

replay

4.1 Traffic pattern known a-priori

To enable SSN, the communication or the network traffic pattern

needs to be known. For most of the workloads that multi-TSP

targets, the communication pattern, both in space and in time, are

known a-priori to the communication itself during the compile

time. As a result, the optimal routing or łschedulingž decision can

be made based on the the traffic pattern. In particular, SSN takes

advantage of a ML model’s static computation graph and a priori

knowledge of the traffic pattern to enable an alternative scheme

for routing tensors as a collection of back-to-back vectors which are

the flow control units (flits) within the network. This provides fine-

grained (320 byte) communications between TSPs by extending

this single-chip determinism to the entire network of TSPs and lays

the foundation for scheduling tensors precisely to the clock cycle

across the network links.

The traffic pattern is an emergent property of the underlying

ML model, and how the model is partitioned across processing

elements allowing for both model parallelism (i.e., distributing dif-

ferent layers across TSPs) and data parallelism to exploit mini-batch

parallelism across the cluster. Model decomposition is automated

by the compiler to auto-scale the workload across a desired number

of TSP elements. The compiler partitions the workload into smaller

sub-tasks and maps them to individual TSPs responsible for execut-

ing them. This mapping process induces the traffic pattern for the

parallel workload. For pipelined model parallelism [30][19] [31] we

compute the precise execution time of each pipe stage’s sub-task

and exchange activations between the layers of each stage. This

A Software-defined Tensor Streaming Multiprocessor for Large-scale Machine Learning ISCA ’22, June 18ś22, 2022, New York, NY, USA

Figure 9: Communication model for (a) a conventional network

using remote DMA and (b) the TSP communication model which

eliminates the request leg of the transaction.

process is fundamentally different than the conventional approach

since we know the exact execution time of each stage (to the clock

cycle) and therefore do not require dynamic profiling to extract the

run-time characteristics of the sub-tasks. This makes the parallel de-

composition step precise and explicitly under control of the compiler.

This flexibility, in turn, allows the compiler’s scheduling algorithm

to explicitly make computation and communication trade-offs to

change the ratio of compute to communication time and control

the surface-to-volume characteristics of the parallel workload. The

compiler will overlap as much compute and communication to

effectively hide the C2C link latency.

4.2 Scheduled, Not Routed

The routing algorithm determines the path a message takes through

the network and is commonly implemented in hardware using

lookup-tables to provide a simple output-port mapping for each

incoming packet by inspecting the packet’s destination node. In

comparison, the multi-TSP system explicitly controls and sched-

ules the hop-by-hop path through the network by orchestrating a

sequence of send and receive instructions on the source and des-

tination nodes, respectively. Given that all data movement can be

statically inferred, the compiler orchestrates data movement based

on global information across time and space to eliminate conflicts

for shared output ports.

To highlight the advantages of SSN, an example is shown in

Fig 8 with four TSPs. Assume both TSPs A and B sends traffic to

D, creating contention for the shared link from B to D. TSP A has

two minimal routes to TSP D Ð routing through TSP B or routing

through TSP C. Without global information on B’s downstream

congestion, TSP A’s may route through TSP B. This routing can re-

sult in congestion at TSP B and create back-pressure towards TSP A

(2). Once the back-pressure is sensed, TSP A can route through TSP

C (3). This reactivity resulting from arbitration and backpressure

not only adds complexity to the hardware but also adds latency

and non-determinism. In comparison, SSN moves this decision-

making from the hardware into the compiler where it can schedule

data movement across the network to avoid contention and enable

deterministic communication.

The scheduling of communication enables an alternative com-

munication model, compared to conventional networks. Conven-

tional networks provide a simple abstraction for communication

between a pair of processors, A and B, in the system (e.g., Infini-

band’s queue-pair abstraction). As an example of the transactional

nature of the network, consider a simple remote transaction where

processor A sends a message like łread the value of address X from

processor B and reply to processor A.ž Upon receipt, processor B,

issues a DRAM read and sends the reply back to processor A in-

curring one round-trip network latency (Fig 9(a)). With a software-

scheduled networking, we only incur half of the network requests

since we know when to send the reply(X) message to the expectant

processor A, eliminating the łrequestž leg of the protocol traffic

(Fig 9(b)). In this model, data is łpushedž toward the TSP that will be

consuming it, and from a programming model perspective, where

the tensor comes from (local versus remote memory) is irrelevant.

4.3 Deterministic Load-balancing

The multi-TSP system exploits the path diversity of the Dragonfly

by deterministically spreading the offered traffic across the available

links. In the same way that more conventional networks spread

packets within a message across the available up links of a fat-tree

[38] network, we are spreading the 320-byte vectors of a larger

tensor across the C2C links in the path between the source and

destination TSP. The abundant path diversity of the Dragonfly hi-

erarchical topology is unlocked using łnon-minimalž routing to

spread the offered traffic across multiple injection links in each TSP.

This łload balancesž the global network links based on the offered

load (tensor size) and precise scheduling of the individual vectors

(flits) to enable deterministic load-balancing. While providing

deterministic load-balancing, this also avoids any end-to-end re-

ordering of hardware-based adaptive routing that strives for the

same goal.

One key difference in the network topology, compared with

hardware-based topologies, is that the łroutersž are effectively łend-

pointsž that are injecting traffic (Fig 4(c)). This is a critical difference

since the amount of bandwidth injected is no longer limited by the

injection bandwidth but by the switch router bandwidth. It is also

critical as it requires non-minimal routing to be bandwidth-aware

non-minimal routing. In a hardware-defined Dragonfly, if there is

no congestion (or contention) for the minimal path, all packets are

routed minimally. When network congestion is sensed, routing may

avoid minimal paths and route non-minimally to use an otherwise

under-utilized path with the goal of reducing latency and improving

overall throughput. As a result, in a hardware-defined Dragonfly, if

only a single source and a single destination are communicating,

non-minimal is not necessary since an injection channel cannot

oversubscribe a single network channel. However, in SSN, non-

minimal routing can be exploited to provide higher amount of

bandwidth between the source and the destination TSP.

Software-scheduled routing still entails a łdecisionž to determine

whether packets should be routed minimally or non-minimally. In

prior works utilizing hardware-based routing, the decisions are

made dynamically on a per-packet basis using local congestion

information (e.g. FIFO depth, or transmit credits) available in the

router. Making the routing decision at compile-time like all other

ISCA ’22, June 18ś22, 2022, New York, NY, USA Abts and Kimmell, et al.

Figure 10: Performance benefit of non-minimal routing as themes-

sage size increases and the number of non-minimal path increases.

functional units on the TSP allows the compiler’s scheduling algo-

rithm to schedule the network links optimally. We use the tensor’s

physical data volume (i.e., the product of a tensor’s dimensions

H×W×C) as the data volume being communicated, and based on

the tensor size we select the number of links to spread the traffic

across. Fig 10 provides an analysis on the benefit of non-minimal

routing as the message size varies and the number of non-minimal

paths within a TSP chassis is modified. The analysis assume 8-node

TSP that are fully connected and thus, one minimal path and seven

non-minimal paths for each source-destination pair. The analysis

provides an optimal distribution of minimally- and non-minimally

routed messages such that overall latency for communication is

minimized. The analysis shows that for a message size smaller

than 8kB, there is no benefit of non-minimal routing. However, for

larger message sizes, the benefit of non-minimal routing gradually

increases and the benefit of more bandwidth (or more non-minimal

paths) provide higher benefit for larger message size. The actual

crossover point on the benefit of non-minimal routing is a function

of the message size, the number of non-minimal paths, and per-hop

latency (not shown).

4.4 Flow Control

To enable SSN, the interconnection disallows dynamic arbitration

since it would result in non-determinism and make it impossible

for the compiler to explicitly schedule and pace every link. There

is also no conventional łqueuingž or buffers that are commonly

found in datacenter networks, aside from very shallow buffers at

the interface between the C2C logic and TSP core clock bound-

aries. In addition, virtual channels (VCs) [10] are commonly used to

avoid routing deadlock with non-minimal global adaptive routing

and guarantee circular dependencies do not occur. With software-

scheduled routing, circular dependencies between packets can still

occur; however, routing deadlock is fundamentally caused when

packets hold on to a resource (e.g., buffer or VC) while requesting an-

other resource (e.g., downstream buffer). With software-scheduled

networking, packets or messages are scheduled in advance; thus,

the packets do not hold on to the resource while requesting an-

other resource and routing deadlock cannot occur ś and VCs are

not needed. Similarly, toroidal deadlock scenarios arise in torus

networks due to overlapping VC dependencies around the torus

links (Fig 6b). The local group radix-8 torus topology enables ef-

ficient nearest-neighbor communication with adjacent TSPs for

inference using pipelined model parallelism. With a radix-8 local

DATA[4:0]
Type (data, CSR, Sync, Ctrl)
Sync
Start

DATA[20:13]
DATA[319:317]
IDLE, IDLE, IDLE
End

DATA[12:5]

header flit (8B)tail flit (8B) body flit (8B) body flit (8B)

Figure 11: Packet format of a 320-byte vector has an encoding effi-

ciency of 97.5% (320/328 bytes).

group topology, we triple-connect physical links within the torus to

increase the nearest-neighbor throughput. Our software-scheduled

approach avoids the complexity and cost of additional virtual (or

physical) channels to avoid deadlock.

One benefit of scheduling and the lack of hardware flow control

is that data no longer needs to be encapsulated into packets and

messages in order to traverse the network; instead, all information

about data movement has been encoded in the instruction streams

produced by the compiler with only 2.5% encoding overhead (Fig

11) of each vector.

4.5 Forward error correction (FEC)

Point-to-point networks like PCIe typically employ a link-layer

retry (e.g. a sliding-window retransmission protocol) to replay pack-

ets at the link-layer so that errors are not observed by the network

or application layers. Unfortunately, this link-level retry mecha-

nism also introduces non-deterministic behavior since it changes

the expected arrival time of the retransmitted packets and thus

interferes with the global synchronization of the system. Instead,

to maintain determinism in the face of transmission errors, we

use forward error correction (FEC) on every link to correct sim-

ple transmission errors and detect uncorrectable burst errors. This

keeps the collection of point-to-point physical links deterministic

between any source-destination TSP pair in the system. We

route packets hop by hop through the network, correcting any

transmission errors in situ, and flag any critical errors that require

the runtime system to łreplayž the inference (i.e. a software replay)

to determine if the fault is transient and disappears after replaying

the inference, or persists after a retry and requires physical inter-

vention (e.g., to replace a marginal cable, power supply unit, or TSP

card) to remedy the fault.

The scale of a parallel computer Ð the maximum number of

processing elements in the system Ð is in a very practical sense

limited by the reliability of the system. The TSP processing elements

use a deterministic datapath and error correction of all single-bit

errors (SBEs) which are corrected in situ by the TSP hardware, and

detect all multi-bit errors (MBEs) so that the runtime software can

replay the inference on a set of known good hardware if and when

a critical error is identified.

The system reliability strategy uses N+1 redundancy by pro-

visioning a hot spare node (Fig 6) in every deployed rack. The

Dragonfly topology is both edge and node symmetric so the net-

work remains fully-connected (ie. there is a path between every

source-destination pair in the system) and is key to making this N+1

resiliency practicable. This strategy allows the runtime to monitor

system health and replace any unusable nodes with the spare node

as the runtime layer marshals resources for invoking the parallel

program’s execution. This overhead can be reduced by provisioning

A Software-defined Tensor Streaming Multiprocessor for Large-scale Machine Learning ISCA ’22, June 18ś22, 2022, New York, NY, USA

Figure 12: The abstraction layers of the hardware-software inter-

face and software stack.

a redundant node per system such that, for example, a 33 node sys-

tem with four racks would have 1 of 33 nodes as the spare (reducing

the overhead from 11% to 3%, leaving 32 nodes (256 TSPs) for exe-

cuting the parallel program. By provisioning a hot-spare node and

providing a software-replay mechanism we can gracefully recover

from a critical fault by having the runtime replay the inference. We

protect against these critical errors with FEC on the network links

and single-error correction and double-error detection (SECDED)

extensively throughout the TSP’s memory system, data paths, and

instruction buffers.

5 EVALUATION AND DISCUSSION

In this section we evaluate the latency and bandwidth character-

istics of several workloads from both HPC and machine learn-

ing including: distributed matrix multiplication, BERT-Large, All-

Reduce collective communications, and Cholesky factorization. The

Cholesky workload in particular is difficult to efficiently parallelize

due to a loop-carried dependence of a vector-matrix multiplication

on the inner-loop. The matrix-matrix, vector-matrix, and matrix

transpose operations are representative of and commonly used by

many machine learning models, like sequence-to-sequence models

(e.g. LSTMs) and transformers.

5.1 Software stack

Fig 12 illustrates the different layers of the software stack with

two primary design entry points either as PyTorch or TensorFlow

inputs, or a custom application on top of a bare-metal programming

interface. Both bare-metal API and the compiler share the same

assembler and runtime stackwhere the scheduled program is passed

to the assembler to generate a machine-code binary that is then

run on the TSP. When targeting multiple TSPs, the input model

is either automatically partitioned by the compiler or manually

by the programmer, and an individual TSP binary is compiled and

prepared for each TSP in the system. The runtime system then

emplaces all program collateral on the TSPs and synchronizes all

programs (as described earlier in Section 3) so that we launch the

inference simultaneously across all cooperating TSPs.

Figure 13: Matrix multiplication on an Nvidia A100 and the

TSP for various Matrix sizes 𝑁 on a single chip.

Figure 14: Performance of a matrix-matrix computation of

size [800×32576]×[32576×8192] (left) latency vs number of

TSPs, and (right) throughput and utilization vs number of

TSPs.

5.2 Distributed matrix multiplication

Matrix operations like vector-matrix and matrix-matrix multipli-

cation are workhorses of ML models. To map matrix workloads

(i.e. [M×N] × [N×L]) onto multiple TSPs, we take two approaches:

column-wise weight splits where the second matrix ([N×L]) is split

equally column-wise across multiple TSPs and the final results are

then concatenated together. Alternatively, row-wise weight splits

where the second matrix is split equally ([N×L] row-wise) across

multiple TSPs and the first matrix ([M×N]) is split column-wise;

the final result is the reduction of all the partial product matrices

produced by each TSP. For single chip, the compiler decomposes

a matrix multiply into [1× K]×[K × 320] sub-operations, where

K=[160,320] i.e. the vector lengths of the hardware for FP16 and

int8 respectively. Additionally, a TSP can run two FP16 or four

int8 sub-operations each cycle. Results are shown in Fig 13 and

compares the achievable utilization of the TSP and Nvidia’s A100

when computing the matrix operation [2304×4096]×[4096×N], for

N=[1376..3500] as described in [33]. As Fig 13 highlights, we are

able to achieve at least 80% utilization consistently at different

matrix sizes on the TSP, which contrasts with conventional archi-

tectures such as GPUs. Using a combination of column-wise and

row-wise weight splits, we can further decompose large matrices

and run them on multiple TSPs to minimize the overall latency of

the operation.

To demonstrate our matrix decomposition approach, we decom-

pose the [800×32576]×[32576×8192] operation amongst several

TSPs using column-wise and row-wise weight splits. We first di-

vide the operation into eight (8) sub-operations using column-wise

splits (i.e. eight [800×32576]× [32576×(8192/8)] operations). We

ISCA ’22, June 18ś22, 2022, New York, NY, USA Abts and Kimmell, et al.

Figure 15: Throughput measured in FP16 TFlops for a

matrix-matrix multiplication of size N, for cluster size of

100, 200, and 300 TSPs.

further decompose the operations onto more TSPs by dividing into

even smaller using row-wise splits of the form [800×(32576/N)]

× [(32576/N)×(8192/8)] where N=[1..13], where we try to cluster

row-wise splits in a single node to leverage the Dragonfly topology.

A reduction is applied within a node on all the partial results (with

8 TSPs) to create one [800×(8192/8)] result per node. Finally, if

needed, the result on each node is reduced and transferred with one

of its neighboring nodes over C2C until eight 800×(8192/8) results

are produced. These are concatenated together to form the final

[800×8192] result.

The results of distributed matrix multiplication are shown in

Fig 14 where we assume a Dragonfly topology described previously,

with each TSP operating at 900MHz with PCIe Gen4 ×16 host CPU

interface. As Fig 14 shows, latency reduces as we perform more

row-wise splits and add more TSPs since adding more TSPs adds

both compute processing elements and communication (C2C) links

allowing the system performance to grow proportionally as we add

more TSPs.

Column-wise splits are used for large matrix operations on a

cluster of TSPs to avoid any large reductions of partial products,

and reduce IO bandwidth requirements that are required in row-

wise splits (Fig 15 i.e. [N×N] × [N×N] is decomposed to X [N×N]

× [N×(N/X)] operations run on X TSPs). When compared to [17]

which uses a cluster of Nvidia V100s, we can achieve over 100×

more FP16 throughput compared to the peak performance on 432

GPUs achieving approximately 2800 (fp64) TFlops on matrix sizes

of 650000×650000. Unfortunately, V100 GPU cluster results using

FP16 data are not publicly known, however, despite differences in

precision the TSP speedup is significant.

The results in Fig 14 highlight how using column-wise and row-

wise weight splits complement each other and can yield extremely

low-latency matrix-matrix operations. The split scheme produces

good results for the matrix dimensions we used. However, depend-

ing on the ML model or workload, these dimensions can vary dras-

tically - yielding different split schemes. For example, in scenarios

where the resultant matrix is relatively small, row-wise splits out-

perform column-wise splits, since communication bandwidth needs

are limited. Additionally, with the Dragonfly topology, reductions

within a node are extremely efficient since each TSP within the

node has direct access to the other 7 TSPs within that node.

The input bandwidth requirements vary drastically depending on

the data ordering of the computation. Decomposing a matrix-matrix

operation on a single TSP involves decomposing the operations

into a sequence of [1×K] × [K×320] operations, where K=160 for

FP16 or K=320 for int8 data values. Depending on the sequence

of K×320 tiles we load into the matrix multiply unit on the TSP,

the bandwidth requirements can change drastically. For example,

for a [100000×100000] secondary weight matrix, if K×320 tiles are

loaded in column-major order (i.e. load rows 0-159, followed by

rows 160-320, and so on) this requires approximately 570 GB/s of in-

coming bandwidth to the chip in order to maintain the computation

throughput. However, traversing the secondary weight matrix in

row-major order reduces demand on incoming bandwidth to only

3.7 GB/s which is well within the channel capacity of a 16-lane PCIe

Gen4 link. In our results shown in Fig 15, we are assuming input

matrices are streamed over PCIe in the order (row, or column-order)

that minimizes the injected data volume transferred across PCIe.

5.3 All-Reduce Bandwidth

Collective operations are used to provide global communica-

tion among cooperating processing elements. These performance-

critical operations often bottleneck the overall system performance

because they are constrained by the slowest link Ð the network

link having highest channel load Ð making it critical to łload bal-

ancež the physical links of the network to avoid variation in the

communication latency among the communicating TSPs. Fig 16

shows the effective (realized) bandwidth performing an 8-way All-

Reduce operation across different tensor sizes, with a zoomed-in

region showing the performance for different message sizes [27].

The combination of synchronous communication over a direct net-

work with very low overhead (Fig 11) allows the All-Reduce to

quickly saturate the available network capacity.

A GPU or CPU system with shared-memory semantics will com-

municate results via shared DRAM, and requires a flag (mutex)

to indicate when the data is produced (ie. globally visible) and

can safely be consumed. After writing the data, but before writing

the flag, a memory fence is required to ensure sequential consis-

tency between the producer and the consumer. This łlock-basedž

shared memory mailbox is flexible [27], but it requires an additional

semaphore for coordination (the mutex, or flag variable) which is

unnecessary on the Groq system since the compiler tracks the to-

tal ordering of memory references and global time of reference,

it does not require the added flag to signal the consumer. Instead,

zoomed in, linear scale

Figure 16: Realized throughput of an 8-way AllReduce.

A Software-defined Tensor Streaming Multiprocessor for Large-scale Machine Learning ISCA ’22, June 18ś22, 2022, New York, NY, USA

Figure 17: BERT-Large latency histogram across 24,240 runs.

the consumer will respect the data dependence and only be issued

after the data is updated, ensuring a sequentially consistent view of

global memory. We see the effect of this shared-memory overhead

in Fig 16 (zoomed in) as the Groq system outperforms competitive

systems on fine-grained communication 5, despite the A100 having

more pin bandwidth. The normalized results for A100 shows the

performance of A100 if the total pin bandwidth was normalized to

the pin bandwidth of a TSP. When normalized, the performance (or

throughput) of TSP AllReduce matches A100 at large tensor size

while significantly outperforming A100 at smaller tensor size.

5.4 Transformers on TSPs

In order to illustrate the predictable and deterministic nature of our

TSP at scale, we execute a single inference of BERT-Large running

on four TSPs within a GroqNode 24,240 times, using SQuAD1.1 dev

Dataset, and measure the latency of the inference which includes

the input read and write time over PCIe. Once measured, we bin

each time into 5𝜇s bins which is plotted in Fig 17, which shows the

zoomed in histogram plot. The results show that 99% of inferences

return in under 1225 𝜇s, with all of them returning by 1300𝜇s. The

dotted line at 100% highlights the estimated latency returned by

our compiler, and shows that it is within 2% of the actual measured

latency in themajority of cases. The deviation and variance between

estimated and measured is due to the extended invocation time

of the PCIe data transfer for the input and output transfers when

running BERT-Large on 4 TSPs. When executing BERT-Base on a

single TSP, we see a similar relationship between the estimated and

measured latency, where their results are within 2% of each other.

As we add processing elements (TSPs) to the system, we are

simultaneously adding both compute resources (vector and matrix

ALUs) as well as communication links to the (direct) interconnec-

tion network. In addition the the predictable nature of the TSP at

scale, Groq TSPs are able to achieve linear scaling as you add more

TSPs to the system. This is illustrated in Fig 18 which shows the

realized TOPs when executing transformer models, normalized to

the execution time on a single TSP. In this run, we scale a BERT

5Results for A100 were measured on an 8 A100 GPU system with 300 GB/s of NVlink
bandwidth per GPU connected through NVSwitch. The measurements are from
nccl-tests [34] and results of bus bw is shown.

Figure 18: BERT encoders executed on 1, 4, 8, and 16 TSPs,

and normalized to the realized throughput (TOPs) on a sin-

gle TSP.

model size from 6, to 24, 48, and 96 encoders and run it on 1, 4, 8 and

16 TSPs respectively. Due to linear scaling, we are able to scale the

realized throughput proportionally to the number of devices. For

example by increasing the compute capacity to 4 TSPs, we are able

to realize 4× more throughput (realized TeraOps) when compared

to the execution of BERT on a single TSP.

5.5 Cholesky factorization on TSPs

The matrix multiplication unit on the TSP consumes two matrices

𝐴 and 𝐵, containing floating-point values with dimensions at most

160×320, and generates the output 𝐴𝐵𝑇 . The inputs are read from

stream registers flowing outward, away from the vector processing

unit in the center of the chip, and the output is written to stream

registers flowing inward, toward the vector processing unit. After

generating an update vector 𝑆 with the matrix multiplication unit,

each iteration of Cholesky modifies it with these vector operations:

Figure 19: Cholesky factorization across multiple TSPs.

ISCA ’22, June 18ś22, 2022, New York, NY, USA Abts and Kimmell, et al.

def cho l e s ky_v e c t o r _op s (S , U , i) :

(n , m) = np . shape (S)

I = S [i : n , [i]] − U [0 : n − i , [0]]

s p l a t = r s q r t (I [0] [0])

upda t e s = I [0 : n − i , [0]] ∗ s p l a t

return (upda t e s)

Here, 𝑆 is the input matrix, 𝑖 is the index of the current iteration,

and 𝑟𝑠𝑞𝑟𝑡 is a custom approximation of the reciprocal square root

function. All of these operations are mapped onto the ALUs in

the vector processing unit in order to modify the data in a single

fly-by. We implement Cholesky by channeling the data through the

matrix and vector units alternately. The matrix is partitioned across

multiple TSPs as shown in Fig 19(a) and (b), we use a block-cyclic

distribution of 320 rows on each TSP. The overall parallel execution

time for Cholesky factorization is proportional to
𝑝3

3 for a 𝑝 × 𝑝

input matrix, that when executed on multiple TSPs yields a net

speedup of 1.2×, 1.4×, and 1.5× for 2, 4, and 8 TSPs, respectively as

shown in Fig 19(c). We show good scaling from 14.9 FP16 TFlops on

4 TSPs to 22.4 FP16 TFlops on 8 TSPs, with 3× realized throughput

compared to the best known results [16].

5.6 Traffic patterns

The TSPs participating in model parallel workload will exchange

global results using an all-reduce across the system to distribute

the result. This łcollectivež operation decomposes to many fine-

grained vector reductions that are accumulated and then broadcast

across all participants. We use non-minimal routing and per-device

compute capacity to efficiently distribute and accumulate partial

reductions bidirectionally. The worst-case latency in a 256-TSP

Dragonfly uses only three (3) hops and thus an all-reduce across all

TSPs has a pipelined network latency of 722 ns per hop ×3 hops =

2,166 ns, or ≈2.1 𝜇sec. A three-stage, hierarchical all-reduce uses

the 8-way fully connected TSPs within each node as the first stage,

the four global links between nodes for the second stage, and final

8-way fully connected network within each node to complete the

hierarchical all-reduce.

In Fig 20, we show the performance breakdown of a 4-TSP sys-

tem running BERT-Large, including the communication time (C2C)

and compute time. To illustrate the importance of load-balancing

the functional units, we show results for both (a) our initial (un-

optimized) compiler implementation which partitioned the work-

load by balancing only FLOPs (floating point operations), whereas

(b) the optimized compiler carefully considers data movements to

exploit the spatial organization of the TSP. The optimized imple-

mentation results in approximately 26% improvement in realized

throughput.

6 RELATED WORK

Scale-outMachine Learning Systems: State of the art NLPwork-

loads have billions of model parameters requiring both memory

capacity and bandwidth to move those parameters into the PEs

where they are computed on. The software-defined Dragonfly net-

work allows the TSPs in the system to communicate synchronously

with no wasted execution incurred for barriers. Different scale-

out systems have been proposed, including Google TPU [42] that

(a)

(b)

Figure 20: Performance breakdown of BERT-Large on a 4-

TSP system with (a) an un-optimized and (b) an optimized

compiler.

uses proprietary interconnect to scale out TPUs using a 2D torus

topology. Habana Gaudi [29] training chips uses commodity eth-

ernet to provide full connectivity within a server while enabling

scale-out through ethernet as well. Nvidia DGX Pod [32] scales

out using NVlink within a DGX system while Infiniband is used to

scale-out the systems. Tesla [22] outlined a high-radix topology to

scale-out their training system. However, all of these systems are

fundamentally based on hardware-defined networks; in compari-

son, this work addresses how software-scheduled network can be

leveraged to enable deterministic communication.

High-Radix Networks: Dragonfly topology [25] has been pro-

posed for scalable large-scale systems in high-performance comput-

ing. Different variations of Dragonfly have been proposed including

Dragonfly+ [40] and MegaFly [14]. Cray/HPE have implemented

a Dragonfly topology with different group topology in their XC

systems [4] and their Slingshot network [37] while providing all-

to-all connectivity between the groups. To exploit the path diver-

sity of the Dragonfly topology, different global adaptive routing

algorithms [20, 41] have been proposed to enable higher perfor-

mance across different traffic patterns. However, all prior work

have focused on hardware-based Dragonfly network; in compari-

son, this work proposes a software-scheduled Dragonfly network

that presents different opportunities as well as challenges. Spread-

ing the offered traffic across available physical links to increase the

throughput and reduce the observed message latency is the goal

of adaptive routing [15][20][2]; however, prior adaptive routing

A Software-defined Tensor Streaming Multiprocessor for Large-scale Machine Learning ISCA ’22, June 18ś22, 2022, New York, NY, USA

was done in hardware while this work proposes a software sched-

uled routing. To minimize performance variations in a multi-hop

network, globally fair arbitration have been proposed. Age-based

arbitration [2] has been implemented to enable global fairness and

techniques such as equality-of-service [28] has been proposed to ap-

proximate global fairness. However, while globally fair arbitration

can improve fairness, it does not provide determinism.

Deterministic Execution:Many hardware/software techniques

have been proposed to enable determinism in general-purpose

multi-core processors [5, 13, 18, 35]. Recently, similar determin-

istic execution have been proposed for GPUs [8, 21] as well as

data-parallel environments [12] and high-performance computing

[9] to enable reproducible execution. While prior work have pro-

posed deterministic execution across different processor architec-

tures, with support from both software and hardware, to the best

of our knowledge, no prior work have explored how determinis-

tic execution can be achieved across multiple nodes of a scale-out

system.

7 CONCLUSION

We describe the system architecture of a novel, purpose-built com-

mercial system for scalable ML and converged HPC applications.

The novel source-based, software-scheduled routing algorithm al-

lows the automatic parallelizing compiler to load balance the global

links of the Dragonfly network. This deterministic load balancing

allows the compiler to schedule the physical network channels

by spreading a large tensor across multiple non-minimal paths

to maximize throughput, or use minimal routing to accomplish a

barrier-free all-reduce with minimal end to end latency. We demon-

strate and discuss system performance on representative workloads

like distributed matrix multiplication, All-Reduce, BERT-Large, and

Cholesky factorization. We extend the Groq’s TSP stream program-

ming model from a single-chip to large scale system-wide deter-

minism using a combination of hardware-alignment counters and

ISA support to facilitate runtime deskew operations to provide the

illusion of a globally synchronous distributed system.

ACKNOWLEDGEMENTS

With any new endeavor where the starting point is simply an idea, a

lot of people and effort goes into synthesizing that idea and bringing

it to fruition. We would like to thank the anonymous reviewers for

their helpful comments. We would like to thank Greg Thorson for

early contributions to this work. Special thanks to Mike Cherba

and Sarah Massengill for detailed comments on early drafts of the

manuscript.

REFERENCES
[1] Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren, Max

Baker, Tom Hawkins, Andrew Bell, John Thompson, Temesghen Kahsai, Garrin
Kimmell, Jennifer Hwang, Rebekah Leslie-Hurd, Michael Bye, E.R. Creswick,
Matthew Boyd, Mahitha Venigalla, Evan Laforge, Jon Purdy, Purushotham Ka-
math, Dinesh Maheshwari, Michael Beidler, Geert Rosseel, Omar Ahmad, Gleb
Gagarin, Richard Czekalski, Ashay Rane, Sahil Parmar, Jeff Werner, Jim Sproch,
Adrian Macias, and Brian Kurtz. 2020. Think Fast: A Tensor Streaming Pro-
cessor (TSP) for Accelerating Deep Learning Workloads. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). 145ś158.
https://doi.org/10.1109/ISCA45697.2020.00023

[2] Dennis Abts and Deborah Weisser. 2007. Age-Based Packet Arbitration in Large-
Radix k-ary n-cubes. In Proceedings of the 2007 ACM/IEEE Conference on Super-
computing (Reno, Nevada) (SC ’07). Association for Computing Machinery, New

York, NY, USA, Article 5, 11 pages. https://doi.org/10.1145/1362622.1362630
[3] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S. Schreiber.

2009. HyperX: Topology, Routing, and Packaging of Efficient Large-Scale Net-
works. In Conference on High Performance Computing Networking, Storage and
Analysis (SC). 1ś11.

[4] Bob Alverson, Edwin Froese, Larry Kaplan, and Duncan Roweth. 2012. The Cray
XC Scaleable System. In Cray Inc. White Paper.

[5] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman.
2010. CoreDet: A Compiler and Runtime System for Deterministic Multithreaded
Execution. In Proceedings of the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Pittsburgh, Pennsyl-
vania, USA) (ASPLOS XV). Association for Computing Machinery, New York, NY,
USA, 53ś64. https://doi.org/10.1145/1736020.1736029

[6] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[7] Cerebras CS-1. 2021. http://cerebras.net. http://cerebras.net (2021).
[8] Yuan Hsi Chou, Christopher Ng, Shaylin Cattell, Jeremy Intan, Matthew D. Sin-

clair, Joseph Devietti, Timothy G. Rogers, and Tor M. Aamodt. 2020. Deterministic
Atomic Buffering. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 981ś995. https://doi.org/10.1109/MICRO50266.2020.
00083

[9] Caroline Collange, David Defour, Stef Graillat, and Roman Iakymchuk. 2014. A
Reproducible Accurate Summation Algorithm for High-Performance Computing.
In Technical Report HAL-00949355, INRIA,.

[10] William J. Dally. 1992. Virtual-Channel Flow Control. IEEE Transactions on
Parallel and Distributed Systems 3, 2 (1992), 194ś205.

[11] W. J. Dally and B. Towles. 2004. Principles and Practices of Interconnection Networks.
Morgan Kaufmann, San Francisco, CA.

[12] David Defour and Sylvain Collange. 2015. Reproducible floating-point atomic
addition in data-parallel environment.. In FedCSIS (Annals of Computer Science
and Information Systems, Vol. 5). IEEE, 721ś728. http://dblp.uni-trier.de/db/conf/
fedcsis/fedcsis2015.html#DefourC15

[13] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. 2009. DMP: Deter-
ministic Shared Memory Multiprocessing. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Washington, DC, USA) (ASPLOS XIV). Association for Computing
Machinery, New York, NY, USA, 85ś96. https://doi.org/10.1145/1508244.1508255

[14] Mario Flajslik, Eric Borch, and Mike A. Parker. 2018. Megafly: a topology for
exascale systems. In High Performance Computing, Rio Yokota, Michèle Weiland,
David Keyes, and Carsten Trinitis (Eds.). Springer International Publishing, Cham,
289ś310.

[15] Christopher J. Glass and Lionel M. Ni. 1992. The turn model for adaptive routing.
In Proceedings of the International Symposium on Computer Architecture.

[16] Azzam Haidar, Ahmad Abdelfatah, Stanimire Tomov, and Jack Dongarra. 2017.
High-performance Cholesky factorization for GPU-only execution. In Proceedings
of the General Purpose GPUs. ACM New York, NY, USA, 42ś52.

[17] Thomas Herault, Yves Robert, George Bosilca, and Jack Dongarra. 2019. Generic
Matrix Multiplication for Multi-GPU Accelerated Distributed-Memory Platforms
over PaRSEC. In 2019 IEEE/ACM 10th Workshop on Latest Advances in Scal-
able Algorithms for Large-Scale Systems (ScalA). 33ś41. https://doi.org/10.1109/
ScalA49573.2019.00010

[18] Derek R. Hower, Polina Dudnik, Mark D. Hill, and David A. Wood. 2011.
Calvin: Deterministic or not? Free will to choose. In 2011 IEEE 17th Interna-
tional Symposium on High Performance Computer Architecture. 333ś334. https:
//doi.org/10.1109/HPCA.2011.5749741

[19] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances
in neural information processing systems 32 (2019), 103ś112.

[20] Nan Jiang, John Kim, and William J. Dally. 2009. Indirect Adaptive Routing on
Large Scale Interconnection Networks. In Proceedings of ISCA’09. Austin, TX,
220ś231.

[21] Hadi Jooybar, Wilson W.L. Fung, Mike O’Connor, Joseph Devietti, and Tor M.
Aamodt. 2013. GPUDet: A Deterministic GPU Architecture. In Proceedings of
the Eighteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Houston, Texas, USA) (ASPLOS ’13).
Association for Computing Machinery, New York, NY, USA, 1ś12. https:
//doi.org/10.1145/2451116.2451118

[22] Andrej Karpathy. 2021. Keynote at Workshop on Autonomous Driving.
[23] Parviz Kermani and Leonard Kleinrock. 1979. Virtual cut-through: A new com-

puter communication switching technique. Computer Networks (1976) 3, 4 (1979),
267ś286.

[24] John Kim, James Balfour, and William Dally. 2007. Flattened butterfly topology
for on-chip networks. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 172ś182.

https://doi.org/10.1109/ISCA45697.2020.00023
https://doi.org/10.1145/1362622.1362630
https://doi.org/10.1145/1736020.1736029
https://doi.org/10.1109/MICRO50266.2020.00083
https://doi.org/10.1109/MICRO50266.2020.00083
http://dblp.uni-trier.de/db/conf/fedcsis/fedcsis2015.html#DefourC15
http://dblp.uni-trier.de/db/conf/fedcsis/fedcsis2015.html#DefourC15
https://doi.org/10.1145/1508244.1508255
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1109/HPCA.2011.5749741
https://doi.org/10.1109/HPCA.2011.5749741
https://doi.org/10.1145/2451116.2451118
https://doi.org/10.1145/2451116.2451118

ISCA ’22, June 18ś22, 2022, New York, NY, USA Abts and Kimmell, et al.

[25] John Kim,William J Dally, Steve Scott, and Dennis Abts. 2008. Technology-driven,
highly-scalable dragonfly topology. In ACM SIGARCH Computer Architecture
News, Vol. 36:3. IEEE Computer Society, 77ś88.

[26] John Kim, William J. Dally, Brian Towles, and Amit K. Gupta. 2005. Microar-
chitecture of a High-Radix Router. In ISCA ’05: Proceedings of the 32nd Annual
International Symposium on Computer Architecture. IEEE Computer Society, Madi-
son, WI, USA, 420ś431.

[27] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. 2020. An In-
Network Architecture for Accelerating Shared-Memory Multiprocessor Col-
lectives. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 996ś1009. https://doi.org/10.1109/ISCA45697.2020.00085

[28] Michael M. Lee, John Kim, Dennis Abts, Michael Marty, and JaeW. Lee. 2010. Prob-
abilistic Distance-Based Arbitration: Providing Equality of Service for Many-Core
CMPs. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’43). IEEE Computer Society, USA, 509ś519.
https://doi.org/10.1109/MICRO.2010.18

[29] Eitan Medina. 2019. Habana Labs Approach to Scaling AI Training. In Hot Chips
31 Symposium, Palo Alto, CA, USA.

[30] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1ś15.

[31] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale
language model training on gpu clusters. arXiv preprint arXiv:2104.04473 (2021).

[32] NVIDIA. 2011. NVidia DGX POD. https://www.nvidia.com/en-us/data-center/
dgx-pod-reference-architecture/

[33] Nvidia. 2021. Matrix Multiplication Background, User Guide. Technical Report.
NVIDIA.

[34] NVIDIA. 2021. NCCL Tests. https://github.com/NVIDIA/nccl-tests/
[35] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo: Efficient

Deterministic Multithreading in Software. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Washington, DC, USA) (ASPLOS XIV). Association for Computing Ma-
chinery, New York, NY, USA, 97ś108. https://doi.org/10.1145/1508244.1508256

[36] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A Reconfigurable Architecture For Parallel Paterns. In International
Symposium on Computer Architecture (ISCA). 389ś402.

[37] Steve Scott. 2019. Rosetta: A 64-port Switch for Cray’s Slingshot Interconnect.
Keynote 2, HOTI.

[38] Steve Scott, Dennis Abts, John Kim, and William J. Dally. 2006. The BlackWidow
High-Radix Clos Network. In Proceedings of the 33rd Annual International Sympo-
sium on Computer Architecture (ISCA ’06). IEEE Computer Society, USA, 16ś28.
https://doi.org/10.1109/ISCA.2006.40

[39] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[40] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi. 2017.
Dragonfly+: low cost topology for scaling datacenters. In 2017 IEEE 3rd Interna-
tional Workshop on High-Performance Interconnection Networks in the Exascale
and Big-Data Era (HiPINEB). 1ś8. https://doi.org/10.1109/HiPINEB.2017.11

[41] Jongmin Won, Gwangsun Kim, John Kim, Ted Jiang, Mike Parker, and Steve Scott.
2015. Overcoming Far-end Congestion in Large-Scale Networks. In IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA).

[42] Cliff Young. 2017. Evaluation of the Tensor Processing Unit: A Deep Neural
Network Accelerator for the Datacenter. In Hot Chips 29 Symposium, Palo Alto,
CA, USA.

https://doi.org/10.1109/ISCA45697.2020.00085
https://doi.org/10.1109/MICRO.2010.18
https://www.nvidia.com/en-us/data-center/dgx-pod-reference-architecture/
https://www.nvidia.com/en-us/data-center/dgx-pod-reference-architecture/
https://github.com/NVIDIA/nccl-tests/
https://doi.org/10.1145/1508244.1508256
https://doi.org/10.1109/ISCA.2006.40
https://doi.org/10.1109/HiPINEB.2017.11

	Abstract
	1 Introduction
	2 Scale-out System Organization
	2.1 Topology Objectives
	2.2 System packaging hierarchy
	2.3 Chip-to-chip (C2C) links and flow control

	3 Maintaining determinism in a distributed system
	3.1 Hardware aligned counters (HAC)
	3.2 Initial program alignment
	3.3 Runtime deskew for resynchronization

	4 Software-Scheduled Networking (SSN)
	4.1 Traffic pattern known a-priori
	4.2 Scheduled, Not Routed
	4.3 Deterministic Load-balancing
	4.4 Flow Control
	4.5 Forward error correction (FEC)

	5 Evaluation and Discussion
	5.1 Software stack
	5.2 Distributed matrix multiplication
	5.3 All-Reduce Bandwidth
	5.4 Transformers on TSPs
	5.5 Cholesky factorization on TSPs
	5.6 Traffic patterns

	6 Related Work
	7 Conclusion
	References

